In this tutorial we will be doing a simple data analysis of the coronavirus outbreak or pandemic using the Julia Programming language.
We will start with fetching the dataset and then do a simple data preparation before continuing with our data analysis. We will be fetching our dataset directly from github( John Hopkins Repo ) .
The following packages will useful for our analysis
CSV.jl
DataFrames.jl
Plots.jl and StatsPlots.jl
PyCall
DataStructures.jl
Gadfly
etc
To install a package in Julia, you can either use the Package Mode from the REPL by typing ] on the REPL to switch to the Package Mode.
Alternatively you can use the inbuilt Pkg package to do the same
using Pkg
Pkg.add("CSV")
Let us start with our task
Out[1]:
"https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv"
Out[3]:
264 rows × 89 columns (omitted printing of 84 columns)
Province/State
Country/Region
Lat
Long
1/22/20
String⍰
String
Float64
Float64
Int64
1
missing
Afghanistan
33.0
65.0
0
2
missing
Albania
41.1533
20.1683
0
3
missing
Algeria
28.0339
1.6596
0
4
missing
Andorra
42.5063
1.5218
0
5
missing
Angola
-11.2027
17.8739
0
6
missing
Antigua and Barbuda
17.0608
-61.7964
0
7
missing
Argentina
-38.4161
-63.6167
0
8
missing
Armenia
40.0691
45.0382
0
9
Australian Capital Territory
Australia
-35.4735
149.012
0
10
New South Wales
Australia
-33.8688
151.209
0
11
Northern Territory
Australia
-12.4634
130.846
0
12
Queensland
Australia
-28.0167
153.4
0
13
South Australia
Australia
-34.9285
138.601
0
14
Tasmania
Australia
-41.4545
145.971
0
15
Victoria
Australia
-37.8136
144.963
0
16
Western Australia
Australia
-31.9505
115.861
0
17
missing
Austria
47.5162
14.5501
0
18
missing
Azerbaijan
40.1431
47.5769
0
19
missing
Bahamas
25.0343
-77.3963
0
20
missing
Bahrain
26.0275
50.55
0
21
missing
Bangladesh
23.685
90.3563
0
22
missing
Barbados
13.1939
-59.5432
0
23
missing
Belarus
53.7098
27.9534
0
24
missing
Belgium
50.8333
4.0
0
25
missing
Benin
9.3077
2.3158
0
26
missing
Bhutan
27.5142
90.4336
0
27
missing
Bolivia
-16.2902
-63.5887
0
28
missing
Bosnia and Herzegovina
43.9159
17.6791
0
29
missing
Brazil
-14.235
-51.9253
0
30
missing
Brunei
4.5353
114.728
0
⋮
⋮
⋮
⋮
⋮
⋮
Out[4]:
10 rows × 89 columns (omitted printing of 84 columns)
Province/State
Country/Region
Lat
Long
1/22/20
String⍰
String
Float64
Float64
Int64
1
missing
Afghanistan
33.0
65.0
0
2
missing
Albania
41.1533
20.1683
0
3
missing
Algeria
28.0339
1.6596
0
4
missing
Andorra
42.5063
1.5218
0
5
missing
Angola
-11.2027
17.8739
0
6
missing
Antigua and Barbuda
17.0608
-61.7964
0
7
missing
Argentina
-38.4161
-63.6167
0
8
missing
Armenia
40.0691
45.0382
0
9
Australian Capital Territory
Australia
-35.4735
149.012
0
10
New South Wales
Australia
-33.8688
151.209
0
Out[5]:
10 rows × 89 columns (omitted printing of 84 columns)
Province/State
Country/Region
Lat
Long
1/22/20
String⍰
String
Float64
Float64
Int64
1
missing
Burundi
-3.3731
29.9189
0
2
missing
Sierra Leone
8.46056
-11.7799
0
3
Bonaire, Sint Eustatius and Saba
Netherlands
12.1784
-68.2385
0
4
missing
Malawi
-13.2543
34.3015
0
5
Falkland Islands (Malvinas)
United Kingdom
-51.7963
-59.5236
0
6
Saint Pierre and Miquelon
France
46.8852
-56.3159
0
7
missing
South Sudan
6.877
31.307
0
8
missing
Western Sahara
24.2155
-12.8858
0
9
missing
Sao Tome and Principe
0.18636
6.61308
0
10
missing
Yemen
15.5527
48.5164
0
Out[6]:
89-element Array{Symbol,1}:
Symbol("Province/State")
Symbol("Country/Region")
:Lat
:Long
Symbol("1/22/20")
Symbol("1/23/20")
Symbol("1/24/20")
Symbol("1/25/20")
Symbol("1/26/20")
Symbol("1/27/20")
Symbol("1/28/20")
Symbol("1/29/20")
Symbol("1/30/20")
⋮
Symbol("4/4/20")
Symbol("4/5/20")
Symbol("4/6/20")
Symbol("4/7/20")
Symbol("4/8/20")
Symbol("4/9/20")
Symbol("4/10/20")
Symbol("4/11/20")
Symbol("4/12/20")
Symbol("4/13/20")
Symbol("4/14/20")
Symbol("4/15/20")
Out[11]:
959-element Array{Symbol,1}:
Symbol("##DataFrame!#113")
Symbol("##DataFrame!#114")
Symbol("##DataFrame!#115")
Symbol("##DataFrame#100")
Symbol("##DataFrame#103")
Symbol("##DataFrame#104")
Symbol("##DataFrame#105")
Symbol("##DataFrame#108")
Symbol("##DataFrame#109")
Symbol("##DataFrame#110")
Symbol("##DataFrame#111")
Symbol("##DataFrame#112")
Symbol("##DataFrame#156")
⋮
:titlecase
:uncompact
:unique!
:unstack
:update_row_maps!
:upgrade_scalar
:uppercase
:uppercasefirst
:view
:without
:wrap
:writetable
Out[13]:
89-element Array{Symbol,1}:
Symbol("Province/State")
Symbol("Country/Region")
:Lat
:Long
Symbol("1/22/20")
Symbol("1/23/20")
Symbol("1/24/20")
Symbol("1/25/20")
Symbol("1/26/20")
Symbol("1/27/20")
Symbol("1/28/20")
Symbol("1/29/20")
Symbol("1/30/20")
⋮
Symbol("4/4/20")
Symbol("4/5/20")
Symbol("4/6/20")
Symbol("4/7/20")
Symbol("4/8/20")
Symbol("4/9/20")
Symbol("4/10/20")
Symbol("4/11/20")
Symbol("4/12/20")
Symbol("4/13/20")
Symbol("4/14/20")
Symbol("4/15/20")
┌ Warning: `melt(df::AbstractDataFrame, id_vars; variable_name::Symbol = :variable, value_name::Symbol = :value, view::Bool = false)` is deprecated, use `stack(df, Not(id_vars); variable_name = variable_name, value_name = value_name, view = view)` instead.
│ caller = top-level scope at In[15]:1
└ @ Core In[15]:1
Out[15]:
22,440 rows × 6 columns (omitted printing of 1 columns)
variable
value
Province/State
Country/Region
Lat
Symbol
Int64
String⍰
String
Float64
1
1/22/20
0
missing
Afghanistan
33.0
2
1/22/20
0
missing
Albania
41.1533
3
1/22/20
0
missing
Algeria
28.0339
4
1/22/20
0
missing
Andorra
42.5063
5
1/22/20
0
missing
Angola
-11.2027
6
1/22/20
0
missing
Antigua and Barbuda
17.0608
7
1/22/20
0
missing
Argentina
-38.4161
8
1/22/20
0
missing
Armenia
40.0691
9
1/22/20
0
Australian Capital Territory
Australia
-35.4735
10
1/22/20
0
New South Wales
Australia
-33.8688
11
1/22/20
0
Northern Territory
Australia
-12.4634
12
1/22/20
0
Queensland
Australia
-28.0167
13
1/22/20
0
South Australia
Australia
-34.9285
14
1/22/20
0
Tasmania
Australia
-41.4545
15
1/22/20
0
Victoria
Australia
-37.8136
16
1/22/20
0
Western Australia
Australia
-31.9505
17
1/22/20
0
missing
Austria
47.5162
18
1/22/20
0
missing
Azerbaijan
40.1431
19
1/22/20
0
missing
Bahamas
25.0343
20
1/22/20
0
missing
Bahrain
26.0275
21
1/22/20
0
missing
Bangladesh
23.685
22
1/22/20
0
missing
Barbados
13.1939
23
1/22/20
0
missing
Belarus
53.7098
24
1/22/20
0
missing
Belgium
50.8333
25
1/22/20
0
missing
Benin
9.3077
26
1/22/20
0
missing
Bhutan
27.5142
27
1/22/20
0
missing
Bolivia
-16.2902
28
1/22/20
0
missing
Bosnia and Herzegovina
43.9159
29
1/22/20
0
missing
Brazil
-14.235
30
1/22/20
0
missing
Brunei
4.5353
⋮
⋮
⋮
⋮
⋮
⋮
Out[16]:
1,056 rows × 87 columns (omitted printing of 81 columns)
variable
value
1/22/20
1/23/20
1/24/20
1/25/20
Symbol
Any
Int64
Int64
Int64
Int64
1
Province/State
missing
0
0
0
0
2
Province/State
missing
0
0
0
0
3
Province/State
missing
0
0
0
0
4
Province/State
missing
0
0
0
0
5
Province/State
missing
0
0
0
0
6
Province/State
missing
0
0
0
0
7
Province/State
missing
0
0
0
0
8
Province/State
missing
0
0
0
0
9
Province/State
Australian Capital Territory
0
0
0
0
10
Province/State
New South Wales
0
0
0
0
11
Province/State
Northern Territory
0
0
0
0
12
Province/State
Queensland
0
0
0
0
13
Province/State
South Australia
0
0
0
0
14
Province/State
Tasmania
0
0
0
0
15
Province/State
Victoria
0
0
0
0
16
Province/State
Western Australia
0
0
0
0
17
Province/State
missing
0
0
0
0
18
Province/State
missing
0
0
0
0
19
Province/State
missing
0
0
0
0
20
Province/State
missing
0
0
0
0
21
Province/State
missing
0
0
0
0
22
Province/State
missing
0
0
0
0
23
Province/State
missing
0
0
0
0
24
Province/State
missing
0
0
0
0
25
Province/State
missing
0
0
0
0
26
Province/State
missing
0
0
0
0
27
Province/State
missing
0
0
0
0
28
Province/State
missing
0
0
0
0
29
Province/State
missing
0
0
0
0
30
Province/State
missing
0
0
0
0
⋮
⋮
⋮
⋮
⋮
⋮
⋮
Out[17]:
22,440 rows × 6 columns (omitted printing of 1 columns)
variable
value
Province/State
Country/Region
Lat
Symbol
Int64
String⍰
String
Float64
1
1/22/20
0
missing
Afghanistan
33.0
2
1/22/20
0
missing
Albania
41.1533
3
1/22/20
0
missing
Algeria
28.0339
4
1/22/20
0
missing
Andorra
42.5063
5
1/22/20
0
missing
Angola
-11.2027
6
1/22/20
0
missing
Antigua and Barbuda
17.0608
7
1/22/20
0
missing
Argentina
-38.4161
8
1/22/20
0
missing
Armenia
40.0691
9
1/22/20
0
Australian Capital Territory
Australia
-35.4735
10
1/22/20
0
New South Wales
Australia
-33.8688
11
1/22/20
0
Northern Territory
Australia
-12.4634
12
1/22/20
0
Queensland
Australia
-28.0167
13
1/22/20
0
South Australia
Australia
-34.9285
14
1/22/20
0
Tasmania
Australia
-41.4545
15
1/22/20
0
Victoria
Australia
-37.8136
16
1/22/20
0
Western Australia
Australia
-31.9505
17
1/22/20
0
missing
Austria
47.5162
18
1/22/20
0
missing
Azerbaijan
40.1431
19
1/22/20
0
missing
Bahamas
25.0343
20
1/22/20
0
missing
Bahrain
26.0275
21
1/22/20
0
missing
Bangladesh
23.685
22
1/22/20
0
missing
Barbados
13.1939
23
1/22/20
0
missing
Belarus
53.7098
24
1/22/20
0
missing
Belgium
50.8333
25
1/22/20
0
missing
Benin
9.3077
26
1/22/20
0
missing
Bhutan
27.5142
27
1/22/20
0
missing
Bolivia
-16.2902
28
1/22/20
0
missing
Bosnia and Herzegovina
43.9159
29
1/22/20
0
missing
Brazil
-14.235
30
1/22/20
0
missing
Brunei
4.5353
⋮
⋮
⋮
⋮
⋮
⋮
┌ Warning: `head(df::AbstractDataFrame)` is deprecated, use `first(df, 6)` instead.
│ caller = top-level scope at In[21]:1
└ @ Core In[21]:1
Out[21]:
6 rows × 6 columns
variable
value
Province/State
Country/Region
Lat
Long
Symbol
Int64
String⍰
String
Float64
Float64
1
1/22/20
0
missing
Afghanistan
33.0
65.0
2
1/22/20
0
missing
Albania
41.1533
20.1683
3
1/22/20
0
missing
Algeria
28.0339
1.6596
4
1/22/20
0
missing
Andorra
42.5063
1.5218
5
1/22/20
0
missing
Angola
-11.2027
17.8739
6
1/22/20
0
missing
Antigua and Barbuda
17.0608
-61.7964
Out[22]:
10 rows × 6 columns
variable
value
Province/State
Country/Region
Lat
Long
Symbol
Int64
String⍰
String
Float64
Float64
1
1/22/20
0
missing
Afghanistan
33.0
65.0
2
1/22/20
0
missing
Albania
41.1533
20.1683
3
1/22/20
0
missing
Algeria
28.0339
1.6596
4
1/22/20
0
missing
Andorra
42.5063
1.5218
5
1/22/20
0
missing
Angola
-11.2027
17.8739
6
1/22/20
0
missing
Antigua and Barbuda
17.0608
-61.7964
7
1/22/20
0
missing
Argentina
-38.4161
-63.6167
8
1/22/20
0
missing
Armenia
40.0691
45.0382
9
1/22/20
0
Australian Capital Territory
Australia
-35.4735
149.012
10
1/22/20
0
New South Wales
Australia
-33.8688
151.209
Out[27]:
6-element Array{Symbol,1}:
:variable
:value
Symbol("Province/State")
Symbol("Country/Region")
:Lat
:Long
Out[28]:
22,440 rows × 6 columns (omitted printing of 1 columns)
Dates
Confirmed
Province/State
Country/Region
Lat
Symbol
Int64
String⍰
String
Float64
1
1/22/20
0
missing
Afghanistan
33.0
2
1/22/20
0
missing
Albania
41.1533
3
1/22/20
0
missing
Algeria
28.0339
4
1/22/20
0
missing
Andorra
42.5063
5
1/22/20
0
missing
Angola
-11.2027
6
1/22/20
0
missing
Antigua and Barbuda
17.0608
7
1/22/20
0
missing
Argentina
-38.4161
8
1/22/20
0
missing
Armenia
40.0691
9
1/22/20
0
Australian Capital Territory
Australia
-35.4735
10
1/22/20
0
New South Wales
Australia
-33.8688
11
1/22/20
0
Northern Territory
Australia
-12.4634
12
1/22/20
0
Queensland
Australia
-28.0167
13
1/22/20
0
South Australia
Australia
-34.9285
14
1/22/20
0
Tasmania
Australia
-41.4545
15
1/22/20
0
Victoria
Australia
-37.8136
16
1/22/20
0
Western Australia
Australia
-31.9505
17
1/22/20
0
missing
Austria
47.5162
18
1/22/20
0
missing
Azerbaijan
40.1431
19
1/22/20
0
missing
Bahamas
25.0343
20
1/22/20
0
missing
Bahrain
26.0275
21
1/22/20
0
missing
Bangladesh
23.685
22
1/22/20
0
missing
Barbados
13.1939
23
1/22/20
0
missing
Belarus
53.7098
24
1/22/20
0
missing
Belgium
50.8333
25
1/22/20
0
missing
Benin
9.3077
26
1/22/20
0
missing
Bhutan
27.5142
27
1/22/20
0
missing
Bolivia
-16.2902
28
1/22/20
0
missing
Bosnia and Herzegovina
43.9159
29
1/22/20
0
missing
Brazil
-14.235
30
1/22/20
0
missing
Brunei
4.5353
⋮
⋮
⋮
⋮
⋮
⋮
Out[31]:
21,250 rows × 6 columns (omitted printing of 1 columns)
Dates
Recovered
Province/State
Country/Region
Lat
Symbol
Int64
String⍰
String
Float64
1
1/22/20
0
missing
Afghanistan
33.0
2
1/22/20
0
missing
Albania
41.1533
3
1/22/20
0
missing
Algeria
28.0339
4
1/22/20
0
missing
Andorra
42.5063
5
1/22/20
0
missing
Angola
-11.2027
6
1/22/20
0
missing
Antigua and Barbuda
17.0608
7
1/22/20
0
missing
Argentina
-38.4161
8
1/22/20
0
missing
Armenia
40.0691
9
1/22/20
0
Australian Capital Territory
Australia
-35.4735
10
1/22/20
0
New South Wales
Australia
-33.8688
11
1/22/20
0
Northern Territory
Australia
-12.4634
12
1/22/20
0
Queensland
Australia
-28.0167
13
1/22/20
0
South Australia
Australia
-34.9285
14
1/22/20
0
Tasmania
Australia
-41.4545
15
1/22/20
0
Victoria
Australia
-37.8136
16
1/22/20
0
Western Australia
Australia
-31.9505
17
1/22/20
0
missing
Austria
47.5162
18
1/22/20
0
missing
Azerbaijan
40.1431
19
1/22/20
0
missing
Bahamas
25.0343
20
1/22/20
0
missing
Bahrain
26.0275
21
1/22/20
0
missing
Bangladesh
23.685
22
1/22/20
0
missing
Barbados
13.1939
23
1/22/20
0
missing
Belarus
53.7098
24
1/22/20
0
missing
Belgium
50.8333
25
1/22/20
0
missing
Belize
13.1939
26
1/22/20
0
missing
Benin
9.3077
27
1/22/20
0
missing
Bhutan
27.5142
28
1/22/20
0
missing
Bolivia
-16.2902
29
1/22/20
0
missing
Bosnia and Herzegovina
43.9159
30
1/22/20
0
missing
Brazil
-14.235
⋮
⋮
⋮
⋮
⋮
⋮
Out[37]:
13,236,200 rows × 7 columns
Dates
Confirmed
Province/State
Country/Region
Lat
Long
Deaths
Symbol
Int64
String⍰
String
Float64
Float64
Int64
1
1/22/20
0
missing
Afghanistan
33.0
65.0
0
2
1/22/20
0
missing
Afghanistan
33.0
65.0
0
3
1/22/20
0
missing
Afghanistan
33.0
65.0
0
4
1/22/20
0
missing
Afghanistan
33.0
65.0
0
5
1/22/20
0
missing
Afghanistan
33.0
65.0
0
6
1/22/20
0
missing
Afghanistan
33.0
65.0
0
7
1/22/20
0
missing
Afghanistan
33.0
65.0
0
8
1/22/20
0
missing
Afghanistan
33.0
65.0
0
9
1/22/20
0
missing
Afghanistan
33.0
65.0
0
10
1/22/20
0
missing
Afghanistan
33.0
65.0
0
11
1/22/20
0
missing
Afghanistan
33.0
65.0
0
12
1/22/20
0
missing
Afghanistan
33.0
65.0
0
13
1/22/20
0
missing
Afghanistan
33.0
65.0
0
14
1/22/20
0
missing
Afghanistan
33.0
65.0
0
15
1/22/20
0
missing
Afghanistan
33.0
65.0
0
16
1/22/20
0
missing
Afghanistan
33.0
65.0
0
17
1/22/20
0
missing
Afghanistan
33.0
65.0
0
18
1/22/20
0
missing
Afghanistan
33.0
65.0
0
19
1/22/20
0
missing
Afghanistan
33.0
65.0
0
20
1/22/20
0
missing
Afghanistan
33.0
65.0
0
21
1/22/20
0
missing
Afghanistan
33.0
65.0
0
22
1/22/20
0
missing
Afghanistan
33.0
65.0
0
23
1/22/20
0
missing
Afghanistan
33.0
65.0
0
24
1/22/20
0
missing
Afghanistan
33.0
65.0
0
25
1/22/20
0
missing
Afghanistan
33.0
65.0
0
26
1/22/20
0
missing
Afghanistan
33.0
65.0
0
27
1/22/20
0
missing
Afghanistan
33.0
65.0
0
28
1/22/20
0
missing
Afghanistan
33.0
65.0
0
29
1/22/20
0
missing
Afghanistan
33.0
65.0
0
30
1/22/20
0
missing
Afghanistan
33.0
65.0
0
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
Out[38]:
"covid_current_cases_dataset.csv"
Analysis
Number of Case Per Country
Per day
Top countries affected
Number of Countries affected
Out[39]:
10 rows × 7 columns
Dates
Confirmed
Province/State
Country/Region
Lat
Long
Deaths
Symbol
Int64
String⍰
String
Float64
Float64
Int64
1
1/22/20
0
missing
Afghanistan
33.0
65.0
0
2
1/22/20
0
missing
Afghanistan
33.0
65.0
0
3
1/22/20
0
missing
Afghanistan
33.0
65.0
0
4
1/22/20
0
missing
Afghanistan
33.0
65.0
0
5
1/22/20
0
missing
Afghanistan
33.0
65.0
0
6
1/22/20
0
missing
Afghanistan
33.0
65.0
0
7
1/22/20
0
missing
Afghanistan
33.0
65.0
0
8
1/22/20
0
missing
Afghanistan
33.0
65.0
0
9
1/22/20
0
missing
Afghanistan
33.0
65.0
0
10
1/22/20
0
missing
Afghanistan
33.0
65.0
0
Out[41]:
185-element Array{String,1}:
"Afghanistan"
"Albania"
"Algeria"
"Andorra"
"Angola"
"Antigua and Barbuda"
"Argentina"
"Armenia"
"Australia"
"Austria"
"Azerbaijan"
"Bahamas"
"Bahrain"
⋮
"Saint Kitts and Nevis"
"Kosovo"
"Burma"
"MS Zaandam"
"Botswana"
"Burundi"
"Sierra Leone"
"Malawi"
"South Sudan"
"Western Sahara"
"Sao Tome and Principe"
"Yemen"
Out[43]:
185 rows × 2 columns
Country/Region
counts
String
Int64
1
Afghanistan
699380
2
Albania
685610
3
Algeria
2400825
4
Andorra
938910
5
Angola
23885
6
Antigua and Barbuda
27540
7
Argentina
2770575
8
Armenia
1469055
9
Australia
84688560
10
Austria
23549080
11
Azerbaijan
1197310
12
Bahamas
54910
13
Bahrain
1882070
14
Bangladesh
534055
15
Barbados
99365
16
Belarus
2049605
17
Belgium
37760910
18
Benin
39270
19
Bhutan
10200
20
Bolivia
350455
21
Bosnia and Herzegovina
1263185
22
Brazil
24019640
23
Brunei
315520
24
Bulgaria
1056295
25
Burkina Faso
682720
26
Cabo Verde
17765
27
Cambodia
256020
28
Cameroon
941120
29
Canada
432352500
30
Central African Republic
13685
⋮
⋮
⋮
Out[44]:
185 rows × 2 columns
Country/Region
counts
String
Int64
1
Afghanistan
784
2
Albania
494
3
Algeria
2160
4
Andorra
673
5
Angola
19
6
Antigua and Barbuda
23
7
Argentina
2443
8
Armenia
1111
9
Australia
2886
10
Austria
14336
11
Azerbaijan
1253
12
Bahamas
49
13
Bahrain
1671
14
Bangladesh
1231
15
Barbados
73
16
Belarus
3728
17
Belgium
33573
18
Benin
35
19
Bhutan
5
20
Bolivia
397
21
Bosnia and Herzegovina
1110
22
Brazil
28320
23
Brunei
136
24
Bulgaria
747
25
Burkina Faso
542
26
Cabo Verde
56
27
Cambodia
122
28
Cameroon
848
29
Canada
14860
30
Central African Republic
12
⋮
⋮
⋮
Out[45]:
185 rows × 2 columns
Country/Region
counts
String
Int64
1
Afghanistan
784
2
Albania
494
3
Algeria
2160
4
Andorra
673
5
Angola
19
6
Antigua and Barbuda
23
7
Argentina
2443
8
Armenia
1111
9
Australia
2886
10
Austria
14336
11
Azerbaijan
1253
12
Bahamas
49
13
Bahrain
1671
14
Bangladesh
1231
15
Barbados
73
16
Belarus
3728
17
Belgium
33573
18
Benin
35
19
Bhutan
5
20
Bolivia
397
21
Bosnia and Herzegovina
1110
22
Brazil
28320
23
Brunei
136
24
Bulgaria
747
25
Burkina Faso
542
26
Cabo Verde
56
27
Cambodia
122
28
Cameroon
848
29
Canada
14860
30
Central African Republic
12
⋮
⋮
⋮
Out[46]:
2-element Array{Symbol,1}:
Symbol("Country/Region")
:counts
Out[62]:
185 rows × 2 columns
Country/Region
counts
String
Int64
1
US
636350
2
Spain
177644
3
Italy
165155
4
France
136779
5
Germany
134753
6
United Kingdom
98476
7
Iran
76389
8
Turkey
69392
9
China
67803
10
Belgium
33573
11
Brazil
28320
12
Netherlands
28153
13
Switzerland
26336
14
Russia
24490
15
Portugal
18091
16
Canada
14860
17
Austria
14336
18
Ireland
12547
19
Israel
12501
20
India
12322
21
Sweden
11927
22
Peru
11475
23
Korea, South
10591
24
Chile
8273
25
Japan
8100
26
Ecuador
7858
27
Poland
7582
28
Romania
7216
29
Norway
6740
30
Denmark
6681
⋮
⋮
⋮
Out[69]:
10 rows × 2 columns
Country/Region
counts
String
Int64
1
US
636350
2
Spain
177644
3
Italy
165155
4
France
136779
5
Germany
134753
6
United Kingdom
98476
7
Iran
76389
8
Turkey
69392
9
China
67803
10
Belgium
33573
Out[70]:
13,236,200 rows × 7 columns
Dates
Confirmed
Province/State
Country/Region
Lat
Long
Deaths
Symbol
Int64
String⍰
String
Float64
Float64
Int64
1
1/22/20
0
missing
Afghanistan
33.0
65.0
0
2
1/22/20
0
missing
Afghanistan
33.0
65.0
0
3
1/22/20
0
missing
Afghanistan
33.0
65.0
0
4
1/22/20
0
missing
Afghanistan
33.0
65.0
0
5
1/22/20
0
missing
Afghanistan
33.0
65.0
0
6
1/22/20
0
missing
Afghanistan
33.0
65.0
0
7
1/22/20
0
missing
Afghanistan
33.0
65.0
0
8
1/22/20
0
missing
Afghanistan
33.0
65.0
0
9
1/22/20
0
missing
Afghanistan
33.0
65.0
0
10
1/22/20
0
missing
Afghanistan
33.0
65.0
0
11
1/22/20
0
missing
Afghanistan
33.0
65.0
0
12
1/22/20
0
missing
Afghanistan
33.0
65.0
0
13
1/22/20
0
missing
Afghanistan
33.0
65.0
0
14
1/22/20
0
missing
Afghanistan
33.0
65.0
0
15
1/22/20
0
missing
Afghanistan
33.0
65.0
0
16
1/22/20
0
missing
Afghanistan
33.0
65.0
0
17
1/22/20
0
missing
Afghanistan
33.0
65.0
0
18
1/22/20
0
missing
Afghanistan
33.0
65.0
0
19
1/22/20
0
missing
Afghanistan
33.0
65.0
0
20
1/22/20
0
missing
Afghanistan
33.0
65.0
0
21
1/22/20
0
missing
Afghanistan
33.0
65.0
0
22
1/22/20
0
missing
Afghanistan
33.0
65.0
0
23
1/22/20
0
missing
Afghanistan
33.0
65.0
0
24
1/22/20
0
missing
Afghanistan
33.0
65.0
0
25
1/22/20
0
missing
Afghanistan
33.0
65.0
0
26
1/22/20
0
missing
Afghanistan
33.0
65.0
0
27
1/22/20
0
missing
Afghanistan
33.0
65.0
0
28
1/22/20
0
missing
Afghanistan
33.0
65.0
0
29
1/22/20
0
missing
Afghanistan
33.0
65.0
0
30
1/22/20
0
missing
Afghanistan
33.0
65.0
0
⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
Out[71]:
85 rows × 2 columns
Dates
counts
Symbol
Int64
1
1/22/20
444
2
1/23/20
444
3
1/24/20
549
4
1/25/20
761
5
1/26/20
1058
6
1/27/20
1423
7
1/28/20
3554
8
1/29/20
3554
9
1/30/20
4903
10
1/31/20
5806
11
2/1/20
7153
12
2/2/20
11177
13
2/3/20
13522
14
2/4/20
16678
15
2/5/20
19665
16
2/6/20
22112
17
2/7/20
24953
18
2/8/20
27100
19
2/9/20
29631
20
2/10/20
31728
21
2/11/20
33366
22
2/12/20
33366
23
2/13/20
48206
24
2/14/20
54406
25
2/15/20
56249
26
2/16/20
58182
27
2/17/20
59989
28
2/18/20
61682
29
2/19/20
62031
30
2/20/20
62442
⋮
⋮
⋮
Out[73]:
85 rows × 2 columns
Dates
counts
Symbol
Int64
1
1/22/20
444
2
1/23/20
444
3
1/24/20
549
4
1/25/20
761
5
1/26/20
1058
6
1/27/20
1423
7
1/28/20
3554
8
1/29/20
3554
9
1/30/20
4903
10
1/31/20
5806
11
2/1/20
7153
12
2/2/20
11177
13
2/3/20
13522
14
2/4/20
16678
15
2/5/20
19665
16
2/6/20
22112
17
2/7/20
24953
18
2/8/20
27100
19
2/9/20
29631
20
2/10/20
31728
21
2/11/20
33366
22
2/12/20
33366
23
2/13/20
48206
24
2/14/20
54406
25
2/15/20
56249
26
2/16/20
58182
27
2/17/20
59989
28
2/18/20
61682
29
2/19/20
62031
30
2/20/20
62442
⋮
⋮
⋮
Out[74]:
10 rows × 2 columns
Dates
counts
Symbol
Int64
1
4/15/20
636350
2
4/14/20
607670
3
4/13/20
580619
4
4/12/20
555313
5
4/11/20
526396
6
4/10/20
496535
7
4/9/20
461437
8
4/8/20
429052
9
4/7/20
396223
10
4/6/20
366667
Data Visualization
Plots
StatsPlots
Gadfly
Plotly
Out[77]:
185 rows × 2 columns
Country/Region
x1
String
Int64
1
Afghanistan
7225
2
Albania
7225
3
Algeria
7225
4
Andorra
7225
5
Angola
7225
6
Antigua and Barbuda
7225
7
Argentina
7225
8
Armenia
7225
9
Australia
462400
10
Austria
7225
11
Azerbaijan
7225
12
Bahamas
7225
13
Bahrain
7225
14
Bangladesh
7225
15
Barbados
7225
16
Belarus
7225
17
Belgium
7225
18
Benin
7225
19
Bhutan
7225
20
Bolivia
7225
21
Bosnia and Herzegovina
7225
22
Brazil
7225
23
Brunei
7225
24
Bulgaria
7225
25
Burkina Faso
7225
26
Cabo Verde
7225
27
Cambodia
7225
28
Cameroon
7225
29
Canada
1625625
30
Central African Republic
7225
⋮
⋮
⋮
Out[80]:
185 rows × 2 columns
Country/Region
counts
String
Int64
1
Afghanistan
784
2
Albania
494
3
Algeria
2160
4
Andorra
673
5
Angola
19
6
Antigua and Barbuda
23
7
Argentina
2443
8
Armenia
1111
9
Australia
2886
10
Austria
14336
11
Azerbaijan
1253
12
Bahamas
49
13
Bahrain
1671
14
Bangladesh
1231
15
Barbados
73
16
Belarus
3728
17
Belgium
33573
18
Benin
35
19
Bhutan
5
20
Bolivia
397
21
Bosnia and Herzegovina
1110
22
Brazil
28320
23
Brunei
136
24
Bulgaria
747
25
Burkina Faso
542
26
Cabo Verde
56
27
Cambodia
122
28
Cameroon
848
29
Canada
14860
30
Central African Republic
12
⋮
⋮
⋮
WARNING: using DataStructures.head in module Main conflicts with an existing identifier.
Out[84]:
Accumulator{String,Int64} with 185 entries:
"Peru" => 7225
"Indonesia" => 7225
"Gabon" => 7225
"North Macedonia" => 7225
"Bangladesh" => 7225
"Kosovo" => 7225
"Ethiopia" => 7225
"Dominican Republic" => 7225
"Vietnam" => 7225
"South Sudan" => 7225
"Morocco" => 7225
"Libya" => 7225
"US" => 7225
"Sierra Leone" => 7225
"Serbia" => 7225
"Malaysia" => 7225
"Mali" => 7225
"West Bank and Gaza" => 7225
"Western Sahara" => 7225
"Russia" => 7225
"Mongolia" => 7225
"Tunisia" => 7225
"Kuwait" => 7225
"Eswatini" => 7225
"Cuba" => 7225
⋮ => ⋮
You can check out the video tutorial below
VIDEO
Thanks For Your Time
Jesus Saves
By. Jesse E.Agbe(JCharis)